DETEKSI PENYAKIT TANAMAN RAMBUTAN BERDASARKAN CITRA DAUN MENGGUNAKAN FUZZY K-NEAREST NEIGHBOUR

نویسندگان

چکیده

Buah rambutan merupakan salah satu tanaman buah lokal Kabupaten Merauke. Tanaman ini dihasilkan di beberapa daerah antara lain Muting, Ulilin, dan Bupul. Hasil produksi diekspor ke sekitar kota Merauke seperti Boven Digoel, Mappi, Asmat. Peningkatan jumlah dapat dilakukan dengan cara menjaga agar pohon tidak terinfeksi hama atau penyakit. Yang mana sejak dini petani harus selalu waspada untuk mengenali jenis penyakit pada rambutan. Hal perlu terjadi ledakan hama, yang berujung berkurangnya buah. Selama secara visual langsung yaitu mengamati perubahan tanaman. Ini membutuhkan waktu tenaga sedikit intens Sehingga penelitian membangun aplikasi mendeteksi Aplikasi mengklasifikasi daun dalam 4 kelas yaitu, sehat, embun jelaga, kutu putih, ulat. Daun diinput akan diproses melalui tahapan pre processing, tahap segmentasi, ekstraksi fitur, terakhir klasifikasi menggunakan metode fuzzy knearest neighbour. Hasilnya dibangun mengklasifikasikan tingkat akurasi sebesar 67%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-Nearest Neighbour Classifiers

Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier – classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance today because issues of poor run-time performance is not such...

متن کامل

Fuzzy-Rough Nearest Neighbour Classification

A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar’s fuzzyrough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the exp...

متن کامل

Small components in k-nearest neighbour graphs

Let G = Gn,k denote the graph formed by placing points in a square of area n according to a Poisson process of density 1 and joining each point to its k nearest neighbours. In [2] Balister, Bollobás, Sarkar and Walters proved that if k < 0.3043 logn then the probability that G is connected tends to 0, whereas if k > 0.5139 logn then the probability that G is connected tends to 1. We prove that,...

متن کامل

Convergence of random k-nearest-neighbour imputation

Random k-nearest-neighbour (RKNN) imputation is an established algorithm for filling in missing values in data sets. Assume that data are missing in a random way, so that missingness is independent of unobserved values (MAR), and assume there is a minimum positive probability of a response vector being complete. Then RKNN, with k equal to the square root of the sample size, asymptotically produ...

متن کامل

CONNECTIVITY OF RANDOM k-NEAREST-NEIGHBOUR GRAPHS

LetP be a Poisson process of intensity one in a squareSn of arean. We construct a random geometric graph Gn,k by joining each point of P to its k ≡ k(n) nearest neighbours. Recently, Xue and Kumar proved that if k ≤ 0.074 log n then the probability that Gn,k is connected tends to 0 as n → ∞ while, if k ≥ 5.1774 log n, then the probability that Gn,k is connected tends to 1 as n → ∞. They conject...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Ilmiah Mustek Anim HA e-journal

سال: 2021

ISSN: ['2354-7707']

DOI: https://doi.org/10.35724/mustek.v10i02.4143